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Universidade de Lisboa

Portugal
atf@inesc-id.pt

Ontologies provide a means to formally describe a domain knowledge in a structured manner that
can be shared between people and computers alike.

In translational medicine approaches (i.e., approaches focused on the improvement of human health
by bridging the gap between basic science research and clinical practice) ontologies play an invalu-
able role in knowledge representation and in data integration [1]-[2].

Ontologies are also a fundamental tool in the implementation of the semantic web proposed by Tim
Berners-Lee et al. [3], where the Web of documents is replaced by the Web of data, thus allowing the
manipulation of data over disparate domains and solving most of the problems previously reported
for data integration.

One of the possible results of translational medicine is the concretization of personalized medicine,
where individual genotypes (i.e., the genetic information of a person) can be associated with the
phenotype (i.e., the observable characteristics) [4]. The identification of such associations can then
result in timely diagnostics (i.e., the identification of a disease in a person) and increasingly accurate
prognostics (i.e., the prediction of the likely outcome of a disease).

Disease prognosis framework

The goal of our work is the development of a disease prognosis framework that leverages the rep-
resentation of knowledge in the form of ontologies. This framework comprises two components: a
data representation and integration component; and a data enrichment and analysis component. At
the core of the integration component is a semantic model developed in the semantic web technology
OWL [5]. On the one hand, this model allows the conceptual representation of data from heteroge-
neous domains of knowledge, which facilitates its integration. On the other hand, it promotes the
discovery of new disease knowledge through the query of explicitly stated information and through
inference. The second component incorporates knowledge from existing ontologies in the form of
overrepresented ontology terms into the dataset under analysis. The use of these terms as features is
expected to improve the quality of the predictions made with the dataset, which will be done through
the exploration of data mining models reflecting the genotype-phenotype associations of the disease
(Fig. 1).
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Figure 1: Disease framework. This framework comprises a data representation and integration component,
and a data enrichment and analysis component. The core of the first component is an OWL semantic model that
provides the conceptual representation of disease knowledge, which assists in the integration of heterogeneous
data from patients. The second component involves an enrichment analysis to identify overrepresented ontology
terms that can be used to profile the patients, and the use of these profiles by data mining algorithms to identify
genotype-phenotype association models. These models can then be used to predict the diagnosis (or prognosis)
of new patients.

Data representation and integration

In the first component of the framework, we used as case study the disease hypertrophic cardiomy-
opathy (HCM). This is an autosomal dominant genetic disease with approximately 1000 mutations
in more than 50 genes currently known to be associated with it [6], and is the most frequent cause
of sudden cardiac death (SCD) in apparently healthy young people and athletes [7]-[8].

The current version of the semantic model is a result of several iterations, which included reusing
existing vocabularies through the incorporation of their knowledge and the creation of mappings
at concept-level [9]. The following four vocabularies were considered for this purpose: System-
atized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) [10], National Cancer Institute
Thesaurus (NCIt) [11], Sequence Ontology [12], and Gene Regulation Ontology [13].

The model was developed modularly, mainly due to the need to integrate data about fundamentally
different real-world entities. The resulting three modules are: Clinical Evaluation, containing ad-
ministrative concepts and clinical data elements necessary for the diagnosis and the prognosis of
HCM patients; Genotype Analysis, containing concepts associated with the genetic testing of bi-
ological samples; and Medical Classifications, an auxiliary module containing medical standards
used in the characterization of clinical elements such as patient symptoms.

In total, the modules contain 66 concepts and 102 properties. The module Clinical Evaluation
(ce:) imports the other two modules through non-hierarchical relationships defined between them
(e.g., ce:Subject ce:hasBiologicalSample ga:Biological Sample, where ga: indicates a class from the
module Genotype Analysis).

Data enrichment and analysis

The main goal of the second component of the framework is the identification of genotype-
phenotype associations that can improve the diagnosis/prognosis of the disease under analysis. Since
the datasets are collected in the context of medical practice, they are frequently characterized by a
small number of clinical features and a high number of missing values, which impairs their use for
knowledge extraction purposes. To deal with these limitations, we have proposed to explore enrich-
ment analysis with this type of dataset to extract relevant knowledge from controlled vocabularies to
improve the quality of the dataset and, therefore, improve the quality of the predictions made with
it [14]-[15].

Enrichment analyses (also known as overrepresentation analyses) are extensively used for the func-
tional analysis of large lists of genes identified with high-throughput technologies, such as expres-
sion microarrays. They exploit the use of statistical methods over ontological gene annotations to
identify biological features that are represented in a gene set under analysis more than would be ex-
pected by chance. Such biological features are said to be enriched, or overrepresented, in the study
set and are then used to formulate a biological interpretation about it. The ontology most commonly
used in these analyses is the Gene Ontology [16]-[17].
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In our implementation of an enrichment analysis we explored the Singular Enrichment Analysis
(SEA) [18]. This enrichment approach works with a gene set (the study set) selected by the re-
searcher from a reference set of genes (the population set) and iteratively tests the enrichment of
each individual ontology term in a linear mode.

The first implementation of this methodology was done with genetic data and the Gene Ontology
[15]. This ontology allows the annotation of biological products with terms describing the molecular
functions (MF) they perform, the biological processes (BP) in which they are involved, and the
cellular components (CC) where they are located or of which they are a component.

Our adaptation of the Singular Enrichment Analysis to a dataset of patients resulted in two different
analyses: an enrichment profiling, and a differential enrichment. Both analyses were applied with
the end purpose of identifying a set of ontological terms that can be used to profile the patients, terms
that will be incorporated into the original dataset as features. Each of the analyses was built to test
slightly different forms of obtaining the set of profiling terms. In the enrichment profiling, the aim
was to characterize the genotype of a group of patients (e.g., the patients positive for a disease-related
event) based on the set of mutations the patients have. Since the knowledge of these mutations is
normally not available for the complete genome of a patient but only for a set of genes associated
with the disease under analysis, the characterization is performed by comparing the genes mutated
in the patients with the complete set of genes in the Human genome. In the differential enrichment
analysis, the aim was to identify differentiating features between a group of patients with a particular
characteristic (e.g., being positive for a disease-related event) and all the patients with the disease.
This analysis is also based on the set of mutations the patients have, considering the mutations in the
study group vs. the mutations in all the patients.

As in the first component of the framework, HCM was used as case study. The analyzed disease-
related event was the occurrence of SCD, and so two different study sets were considered: patients
with SCD and patients without SCD (no-SCD). In the enrichment profiling, SCD and no-SCD were
tested in turn against the Human genome, whereas in the differential enrichment SCD and no-SCD
were tested in turn against the entire population of HCM patients.

The enrichment profiling analysis identified several enriched terms (p-value < 0.1): 53 for SCD and
70 for no-SCD, without multiple-testing correction; 40 for SCD and 62 for no-SCD, with Bonferroni
correction. Examples of the enriched terms are regulation of heart rate and adult heart development
(both BP), myosin heavy chain binding (MF), and striated muscle myosin thick filament (CC).

The differential enrichment analysis identified one term for SCD and five terms for no-SCD (p-value
< 0.1, not considering multiple-testing correction). The SCD term is the MF structural constituent
of muscle (p-value = 0.08), and the no-SCD terms are: negative regulation of ATPase activity (p-
value = 0.08) and regulation of ATPase activity (p-value = 0.09; both BP); striated muscle thin
filament (p-value = 0.08) and troponin complex (p-value = 0.08; both CC); and troponin C binding
(p-value = 0.08; MF).

The results obtained with these analyses indicate that the enrichment profiling analysis is useful for
the characterization of patients, as it allowed the identification of meaningful terms associated with
HCM. Notwithstanding, the preliminary results here referred where obtained only for the genetic
data and thus we are currently performing the analysis of the clinical data with the vocabularies
SNOMED-CT and NCIt. Additionally, we are testing the enrichment methodology with a second
dataset, of patients with chronic obstructive pulmonary disease, considering the same vocabularies
as for HCM.

The evaluation of the enrichment methodology will be done by applying data mining algorithms to
the datasets: without enriched terms; and adding the enriched terms as features to the dataset. We
expect that the results obtained with the algorithms will be improved by the inclusion of the ontology
terms.

The disease framework was designed do that it can be used for any genetic disease. On the data rep-
resentation and integration component, the modular development of the semantic model facilitates
its extension and reutilization. Similarly, the enrichment and mining methodology in the second
component was developed to explore the most of the case-study dataset but avoiding overfitting.
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Once finalized, the disease framework will play an important role in the concretization of trans-
lational medicine by assisting medical doctors in the definition of the appropriate treatments and
preventive actions for individual patients.
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